Probability and Statistics for Artificial Intelligence (AAI 500)

Course Description

This course is an introduction to probability and statistical concepts and their applications in solving real-world problems. This prerequisite course provides a solid background in the application of probability and statistics that will form the basis for advanced data science methods. Statistical concepts, probability theory, random and multivariate variables, data and sampling distributions, descriptive statistics, and hypothesis testing will be covered. The use of computer-based applications for the performance of basic statistics will be utilized. Covered topics include the numerical and graphical description of data, elements of probability, sampling distributions, probability distribution functions, estimation of population parameters, and hypothesis tests. This course will combine the learning from texts, case studies, and standard organizational processes with practical problem-solving skills to present, structure, and plan the problem as it would be presented in large enterprises, and execute the steps in a structured analytics process.

Units

3 units